Name of Teacher- Mr Arvind Shankarrao Salve

Programme (Name) - B. Sc.

Code-

Programme Specific Name-B. Sc. in Mathematics Code-

Sr.	Course Name	Course code	Class
No.			
1	Algebra I	USMT102	F. Y. B. Sc.
2	Discrete Mathematics	USMT202	F. Y. B. Sc.
3	Linear Algebra I	USMT302	S. Y. B. Sc.
4	Ordinary Differential Equations	USMT303	S. Y. B. Sc.
5	Linear Algebra II	USMT402	S. Y. B. Sc.
6	Numerical Methods (Elective A)	USMT403	S. Y. B. Sc.
7	Linear Algebra	USMT502	T. Y. B. Sc.
8	Numerical Analysis I	USMT5A4	T. Y. B. Sc.
9	Algebra	USMT602	T. Y. B. Sc.
10	Numerical Analysis II	USMT6A4	T. Y. B. Sc.

Course outcome (2021-22)-

Sr.	Course	Course	Outcomes
No.	Name	code	
	·		FYBSc
1	Algebra I	USMT 102	 Student will knows basic concepts of functions, set, finite set, types of relations, congruence and equivalence relations, polynomials over field and related theorems. Student can apply above concepts on the theorems as Euler's theorem, Fermat's theorem, Wilson theorem, Remainder theorem, Factor theorem. Student will solve problem on the basis of concepts and its applications (theorems) such as finding root of polynomials, evaluate properties of binary functions etc.
2	Discrete Mathema tics	USMT 202	 Student will knowsbasic concepts of permutations and recurrence relations, Binomial and Multinomial Theorem, Pascal identity, Permutation and combination of sets and multi-sets, circular permutations, Principle of inclusion and exclusion, Finite and Infinite sets. Student understands properties related to above concepts such as cycles, disjoint cycles, homogeneous and non-homogeneous recurrence relations, Addition and multiplication Principle, Stirling numbers of second kind, application of exclusion principle etc.

	1		
			3. Student will evaluate problems based on above concepts and its properties
			such as rank and signature of a permutation, homogeneous recurrence relation
			of second degree using algebraic method, Simple recursion of S(n; k).
	1		SYBSc
3	Linear	USMT	1. Student will knows basic concepts of types of systems of linear equations in
	Algebra I	302	Matrix form, Vector space, Subspaces, Basis and Dimensions.
			2. Students understand various methods of solving system of equations such as
			Echelon form, Gaussian elimination method.
			3. With the help of above concepts and necessities, Student can find various
			things such as linearly dependence/independence, basis set, Dimension of
			vector space
			4. Student will understand and uses the properties of determinant. Student will
4			easily solve problems on Cramer's Rule and LU decomposition.
4	Ordinary	USMT	1. Student will knows basic concepts of differential equation, order, degree,
	Different	303	ordinary differential equation and partial differential equation, linear and non-
	ial E		linear ODE. Homogeneous and non-homogeneous second order linear
	Equation		differentiable equation and numerical differentiation & integration.
	S		2. Student understands Wronskian and its properties, general solution of DE,
			Variation of parameters and Iterative methods.
			3. Student can find Wronskian and show it is LI/LD, C. F., P. I., general solution.
			4. Student will understand the methods of numerical solution of first order
			differential equations with various methods such as Taylor's method, Euler's
			method, modified Euler's method, Runge-Kutta methods etc.
5	Linear	USMT	1. Student will knows basic concepts of linear transformation, Rank-Nullity
5	Algebra	402	theorem, Matritrx associated to linear transformation, change of basis,
	II	102	equivalence of similar matrices.
			2. Student understand inner product space and its examples. Also knows
			concepts of Triangle inequality and Cauchy-Schwartz inequality etc. Student
			can find angel between the two vectors, understand the concepts of Gram
			Schmidt Orthogonalization process.
			3. Student will find the eign values using Cayley Hamilton theorem.
6	Numeric	USMT	1. Student will understand the concepts of errors, also knows types of errors.
	al	403	2. Student understand iterative methods ex. Newton Rapson method, Secant
	Methods		method & Fix point method and solves the problems related to it.
			3. Student will able to interpolate the polynomial using Lagrange's
			interpolation method. Student understand finite difference operators.
			4. Student will solve linear system of equations by LU decomposition method,
			Guass-Seidel iterative method. Solve the problems on eign value method
			Jacobi iterative method and Rutishauser method etc.
			TYBSc
7	Group	USMT	1. Students will have a working knowledge of important mathematical
	Theory	502	concepts in abstract algebra such as definition of a group, order of a finite
			group and order of an element, rings, Euclidean domain, Principal ideal
			domain and Unique factorization domain.
			2. Students will also understand the connection and transition between
			previously studied mathematics and more advanced mathematics.
			3. The students will actively participate in the transition of important concepts
			such homomorphisms & isomorphisms from discrete mathematics to
			advanced abstract mathematics

S.	Course	Cours	Outcomes
N.	Name	e code	
8	Partial differential equations	USMT 5A4	 Students will able to understand the various analytical methods for solving first order partial differential equations. Students will able to understand the classification of first order partial differential equations. Students will able to grasp the linear and non linear partial differential equations.
9	Ring Theory	USMT 602	 Student will knows concepts Normal subgroups of a group, Centre of a group, Quotient group, Alternating group An, cycles, ring, ideal of ring, integral domain, prime ideal, polynomial ring, Euclidean domain(ED), Principal Ideal Domain (PID), Unique Factorization and its relations. Student will understand First Isomorphism theorem, Cayley's theorem, finite integral domain is a field, Characteristic of an integral domain, Irreducible polynomials over an integral domain. Unique Factorization Theorem for polynomials over a field, Characterization in terms of quotient rings. Student will solve examples based on above theoretical results and its properties such as Classification of groups of order ≤ 5, examples on Characterization in terms of quotient rings, Units of a ring, multiplicative group of units of a ring.
10	Integral Transform	USMT 6A4	 Students will able to understand the concept of integral transforms and their corresponding inversion techniques. Students will able to understand the various applications of integral transforms

Sachin Vithalrao Bedre (M. Sc., Ph. D.)

Assistant Professor in Mathematics, Department of Mathematics, Dr. S. D. D. Arts College and Commerce and Science College, Wada Course outcomes

<u>A.Y. 2022-23</u>

Program Specific outcomes of B.Sc. in Mathematics:

After completion of B.Sc. in mathematics students are able to

1. Demonstrate a rigorous understanding of core theory of mathematics, which includes calculus, algebra, differential equation, metric topology, complex analysis and numerical methods.

- 2. Learn to solve multiple integral.
- 3. Understand the concept of metric topology.
- 4. Learn properties of analytic function.

Course Outcomes:

Sr. No.	Course Name	Course code	Outcome
1	Multivariable Calculus II	USMT 501	On completion of this unit successfully students will be to:
			1. Solve double and tripled integrals
			2. Handle Multiple, line and surface integral
			 Translate real life situations into symbolism of
			mathematics and find solution for the resulting

Year – 2022-23

			models
2	Topology of Metric Spaces	USMT 503	On completion of this unit successfully students will be to: 1. Deal with various examples of metric
			spaces
			2. Have some familiarity with open and closed sets.
			3. Work with compact sets in Euclidean spaces
3	Elements Of Operations Research – I	USACOR501	On completion of this unit successfully students will be to:
			1.Solve LPP problems using graphical method, Simplex method and Big-M method etc
			2. Handle Dual Simplex Method
			3. Have some familiarity with Uniform, Binomial, Poisson, Exponential, Normal Distribution
4	Practicals based on USMT501	USMTP05	On completion of this unit successfully students will be to:
			 Solve double and tripled integrals
			2. Handle Multiple, line and surface integral
			3. Translate real life situations into

			symbolism of mathematics and find solution for the resulting models
5	Practicals based on USMT503	USMTP06	On completion of this unit successfully students will be to:
			 Deal with various examples of metric spaces
			2. Have some familiarity with open and closed sets.
			3. Work with compact sets in Euclidean spaces
6	Practicals based on USACOR501	USACOR5P1	On completion of this unit successfully students will be to:
			1.Solve LPP problems using graphical method, Simplex method and Big-M method etc
			2. Handle Dual Simplex Method
			3. Have some familiarity with Uniform, Binomial, Poisson, Exponential, Normal Distribution
7	Basic Complex Analysis	USMT 601	On completion of this unit successfully students will be to:
			1. Explain the fundamental concepts of complex analysis and their role in modern

			mathematics and applied contexts
			2. Apply problem solving using complex analysis techniques applied to diverse situations in physics, engineering and other mathematical contexts
8	Topology of Metric Spaces and Real Analysis	USMT 603	On completion of this unit successfully students will be to:
			 Demonstrate accurate and efficient use of Metric Spaces techniques.
			2. Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concept from metric spaces
			3. Apply the ideas of metric spaces to other areas of mathematics
9	Elements Of Operations Research – II	USACOR601	On completion of this unit successfully students will able to:
			 Take decision under uncertainty using Laplace criterion, Maximax (Minimin) criterion etc.
			2. Have familiarity with Simple and compound interest

			3) Understand stock market.
10	Practicals based on USMT601	USMTP07	On completion of this unit successfully students will be to:
			1. Explain the fundamental concepts of complex analysis and their role in modern mathematics and applied contexts
			2. Apply problem solving using complex analysis techniques applied to diverse situations in physics, engineering and other mathematical contexts
11	Practicals based on USMT603	USMTP08	On completion of this unit successfully students will be to:
			1. Demonstrate accurate and efficient use of Metric Spaces techniques.
			2. Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concept from metric spaces
			3. Apply the ideas of metric spaces to other areas of mathematics
12	Practical based on USACOR601	USACOR6P1	On completion of this unit successfully

			students will able to:
			 Take decision under uncertainty using Laplace criterion, Maximax (Minimin) criterion etc.
			2. Have familiarity with Simple and compound interest
			3) Understand stock market.
13	Calculus III	USMT 301	On completion of this unit successfully students will able to:
			1. Understand scalar and vector field
			2. Differentiate scalar and vector field
			3. Apply these ideas to other areas of mathematics
14	Practicals based on USMT 301	USMTP03	On completion of this unit successfully students will able to:
			1. Understand scalar and vector field
			2. Differentiate scalar and vector field
			3. Apply these ideas to other areas of mathematics
15	Calculus IV	USMT 401	On completion of this unit successfully students will able to:

			 Demonstrate accurate and efficient use of Riemann integral 2. Have familiarity with Indefinite and improper integrals Translate real life situations into symbolism of mathematics and find solution for the resulting models
16	Practical based on USMT 401	USMTP04	On completion of this unitsuccessfully students will able to:1. Demonstrate accurate and efficient use of Riemann integral 2. Have familiarity with Indefinite and improper integrals3. Translate real life situationsinto symbolism3. Translate real life situationsof mathematicsand find solution for the resulting modelsof
17	Calculus I	USMT 101	On completion of this unitsuccessfully students will able to:1. Have familiarity with Real Number System, sequences, properties and ODE2. Verify whether given functionsfunctionsare continuous and able to

			solve ODE.
			3.Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concept from calculus
18	Practicals based on USMT 101	USMTP01	On completion of this unit successfully students will able to:
			1. Have familiarity with Real Number System, sequences, properties and ODE
			2. Verify whether given functions are continuous and able to solve ODE.
			3. Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concept from calculus
19	Calculus II	USMT 201	On completion of this unit successfully students will able to:
			 Have familiarity with limit, continuity and differentiability.
			2.Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concept from calculus

20	Practicals based on USMT 201	USMTP02	On completion of this unit successfully students will able to: 1. Have familiarity with limit, continuity and
			differentiability. 2.Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concept from calculus
21	Mathematical and Statistical Techniques-I	UBCOMFSI.6	On completion of this unitsuccessfully students will able to:1. UnderstandShares and Mutual Funds2. Differentiate Permutation, CombinationDifferentiate yermutation, Combination3. Have familiarity with Summarization Measures, Probability Theory and Decision Theory
22	Mathematical and Statistical Techniques-II	UBCOMFSII.6	On completion of this unitsuccessfully students will able to:1.Understand Functions, Derivatives

	Regression
	3. Have familiarity with
	Time series and Index
	Numbers